AVATecH audio detectors

Fraunhofer IAIS

AVATecH Workshop 21.04.2010 Nijmegen, Netherlands Daniel Schneider, Sebastian Tschöpel

Contents

- Introduction
- AVATecH Corpus
- Annotation scenarios
- Semi-automatic workflows for the annotation scenarios
- AVATecH audio detectors: State of the art
- Outlook
- Demonstration

Fraunhofer IAIS Speech Group

- Working on Spoken Document Retrieval since 2001
 - ASR, speech search, structual audio analysis
- Involved in public research projects and industry cooperations
- So far: mainly work on Broadcast data
 - Focus on language-dependent solutions for German
- But also specialized work
 - ASR on motorcycles, Animal sound discovery

Introduction

- What has been done?
 - Reviewed AVATecH corpora provided by MPI Nijmegen
 - Derived examples for annotation scenarios
 - Improved analysis algorithms on difficult AVATecH data
 - Developed concepts for detectors that exploit user-feedback
- Open problem: Definition of more annotation scenarios
 - how can we support your daily work?

AVATecH Corpus

- Material in various MPI corpora is
 - varying in audio quality (office experiments vs. field recordings)
 disqualifies fixed analysis models
 - varying in languagedisqualifies language-dependent approaches
 - varying in genre (interviews, monologues, ...)
 disqualifies specialized solutions
 - not necessarily carrying information of interest in audio
- Flexible solutions needed that are able to cope with a large variety of annotation problems
- Initially we focus on two general annotation scenarios

Initial annotation scenarios

Scenario 1: Semi-automatic segmentation and labeling to support skimming of field recordings

Scenario 2: Semi-automatic labeling of interviewers and subjects

Subject Interviewer recordings recordings

Scenario 1: Workflow for pre-annotation of field recordings

Scenario 2: Workflow for interview structuring

Initial annotation scenarios

Scenario 1: Semi-automatic segmentation and labeling to support skimming of field recordings

Analyse- und Informationssysteme IAIS

IAIS

AVATecH audio detectors: State of the art

- Audio segmentation
 - Autonomously splits audio stream into homogeneous segments
 - Using Dynamic Programming / Bayesian Information Criterion (BIC)
 - Baseline with MFCC features
 - We investigate noise-robust features using spectral auto-correlation (SAC)
 - Essential pre-processing, works well on non-noisy data
- Speech/Non-speech detection
 - Detects whether a segment contains speech or not
 - Based on GMMs with MFCCs/SAC
 - Works well with in-domain training data
 - Integrate user-driven feedback mechanism for adaptation
 - Similar: Gender Detection

AVATecH audio detectors: State of the art

- Speaker clustering
 - Joins and labels segments with the same speaker
 - Based on Bayesian Information Criterion
 - Works well on Broadcast data, e.g. for detection of anchor person
 - Poor results on most AVATecH corpora, robustification needed
 - How to integrate user-feedback?
 - High time complexity of clustering what about large collections?
- Speaker Identification
 - Identifies segments with known speakers in a given corpus
 - Using spectral and pronunciation features
 - Plan to integrate user-driven mechanisms to automatically train new speaker models

Outlook

- Language Independent Alignment
 - Approach: Top-Down method (from paragraph to word level) using different language-independent features
 - Histogram-like matching of repetitive patterns in text and audio
 - Optional anchor points available through user-feedback
 - Core difficulties: Lack of language model & noisy data
- Acoustic Query-By-Example
 - Find repeated similar audio events by marking one example
 - Approach: Fast matching in pre-computed feature index
 - Detection and discrimination of linear and noise-like spectral features
 - Sparse point of interest encoding
 - Idea from animal sound discovery

Demonstration

Scenario 1

Unstructured field recordings

Annotated field recordings for quick skimming

Scenario 2

Annotated field recordings for quick skimming

Subject Interviewer recordings recordings recordings recordings recordings

Thank you for your attention!

